About
Research
Academics
People
Board
============================================================== <세미나1> 제 목 : Modeling of chemical and physical processes: towards a quantitative engineering approach– practical applications 연 사 : Prof. Phillipe Heynderickx(GHENT UNIVERSITY) <세미나2> 제 목 : Defect creation via synthesis procedure in metal-organic frameworks 연 사 : Prof. Francis.Verpoort(GHENT UNIVERSITY) 일 시 : 2016년 10월 26일(수) 오후 2시 30분 장 소 : 화학관 첨단강의실 (330118호실) ============================================================== <세미나1> Modeling of chemical and physical processes: towards a quantitative engineering approach– practical applications In the early days, researchers were relying on performed experiments to describe reality vialaboratory tests. For example in catalysis (blue triangle in given figure), materials were prepared,characterized in a physical way (e.g. XRD, TEM, BET…) or chemical way (selectivereactions). This practice gained power when computational possibilities were created via theuse of a computer. The next step in this natural process of research was to come up with kineticor physical models describing reality as adequate as possible, giving rise to chemical andphysical descriptors of this reality.Today, the research of Prof. Dr. ir. Philippe M. Heynderickx focuses on the green triangle inthe figure: a combination of catalytic testing of materials (MOFs for e.g. selective adsorptionor fine-chemical reactions or metal oxides catalysts for e.g. selective oxidation reactions), thecorresponding kinetic modeling via fundamental reaction steps using intrinsic data and theupscaling to industrial proportion via reactor simulation.The long-term strategy is the development, construction and implementation of intrinsic kineticmodels describing catalytic reactions for daily relevant applications. Especially environmentalapplications in ‘green chemistry’ conversion, environmental sensors, catalysis andenergy storage applications are envisaged. ------------------------------------------------------------------------------------------- <세미나2> Defect creation via synthesis procedure in metal-organic frameworks Francis Verpoort1,2,3,4, 1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Center for Chemical and Material Engineering, Wuhan University of Technology, Wuhan 430070, P.R. China 2 School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P.R. China. 3 Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Ghent, Belgium 4Ghent University, Global Campus Songdo, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, Korea *E-mail: Francis@whut.edu.cn / Francis.verpoort@ugent.be The variation in synthesis procedure, such as solvothermal, room temperature, microwave and spray drying, for metal-organic frameworks (MOFs) effluences the structure, morphology and properties of the MOF materials such as crystal sizes, particle shape, surface area, defect structures (defects) and gas adsorption properties of N2, CO2, CH4 etc.[1] This work describes procedures to synthesize MOFs exposing dramatically different properties compared with the same MOFs prepared in a conventional manner. These results were deduced and supported from crystal morphologies which are related to the rate of crystallization or crystal growth, from surface and porosity properties evaluation from adsorption measurements, and from temperature decomposition analysis.[2] Furthermore, the crystal framework keeps the same structure as proven from the XRD pattern and coordination functional group analysis (Fig.1). The diversity of defect structures correlates with active sites and thus also with the catalytic performance which is confirmed via example of catalytic reactions. The high catalytic performance of MOFs from this invention is related to the presence of more acid and basic sites occurring on defect structure. Knowledge of the nature and amount of defects is of utmost importance to decide which MOF is suitable for a certain catalytic reaction. Fig1. The synthesis ZIF-8 by different procedure (Spray drying: ZIF-8-SP, Microwave: ZIF-8-MW, Room temperature: ZIF-8-RT, Solvothermal: ZIF-8-SV) and their accompanying XRD patterns (a) The crystal morphology, shape and size investigated by SEM technique (b). The crystal morphology evolution with rate of crystallization effluence of procedure in MOFs synthesis from rapid to slowing growth (top to down direction) present the cube shape to rhombic dodecahedron shape (c). S. Chaemchuen, N.A. Kabir, K. Zhou, F. Verpoort, Chem. Soc. Rev. 42, 9304-9332 (2013). Z. Fang, B. Bueken, D.E. De Vos, R.A. Fischer, Angew. Chem. Int. Ed.54, 7234-7254 (2015)
============================================================== 제 목 : Interfaces in Science and Technology 연 사 : Prof.Per Claesson(KTH Royal Institute of Technolog) 일 시 : 2016년 10월 18일(화) 오후 4시 30분 장 소 : 화학관 첨단강의실 (330118호실) ============================================================== Interfaces in Science and Technology Per Claesson, percl@kth.se KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden Abstract Interfaces are becoming key to development in a range of areas, including development of nanomeaterials and nanocomposities, green corrosion protection systems, bisurfaces and biomaterials, anti-icing technologies, and aqueous lubrication technologies. This presentation will provide an overview of some activities at the Surface and Corrosion Science Division at the Royal Institute of Technologyin Stockholm. The presentation will introduce and discuss the following topics: The quest for green corrosion protective coatings, where we have achived promising results with several different systems including i) UV-cured polymer films (≈ 10 µm thick) incorporating small amount of conducting polymer, ii) superhydrophobic coating layers, and iii) thin films (≈ 100 nm) of mussel adhesive polymers and ceria nanoparticles. Nanomechanical properties of the interphase, i.e. the region next to a particle embedded in a polymer matrix. Such studies are performed using scanning probe methods and provide direct measurements of nanomechanical properties with a high spatial resolution. Molecular lubrication synergies underlying the outstanding lubrication properties of synovial joints, and the development of biomimetic lubricants providing low friction and high load bearing capacity in aqueous media, where we have achieved results that are comparable to that found in synovial joints. The surface chemical approach to anti-icing and de-icing surfaces, where modification of surface properties are utilized for achieving low ice adhesion. At present it seems that such approaches could provide benefit for relatively small surfaces as found in heat exchangers and windscreens.
============================================================ 제 목 : Development of Metal-Catalyzed Direct C-H Amination Reactions 연 사 : 장석복 교수(KAIST) 일 시 : 2016년 12월 1일(목) 오후 4시 15분 장 소 : 화학관 첨단강의실(330118호) ----------------------------------------------------------- Development of Metal-Catalyzed Direct C-H Amination Reactions Sukbok Chang Institute for Basic Science (IBS), Daejeon 305-701, Korea Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 305-701, South Korea E-mail: sbchang@kaist.ac.kr The mechanism of the Ir(III) and Rh(III)-mediated C–N coupling reaction, which is the key step of catalytic C-H amidation, was investigated in an integrated experimental and computational study. Novel amidating agents containing a 1,4,2-dioxazole moiety allowed for designing a stoichiometric version of the catalytic C–N coupling reaction and giving access to reaction intermediates that reveal details about each step of the reaction. Both DFT and kinetic studies strongly point to a mechanism where the M(III) complex engages the amidating agent via oxidative coupling to form a M(V)-imido intermediate, which then undergoes migratory insertion to afford the final C–N coupled product. For the first time, the stoichiometric versions of the Ir and Rh-mediated amidation reaction were compared systematically to each other. Iridium reacts much faster than rhodium (~ 1100 times at 6.7 oC) with the oxidative coupling being so fast that the activation of the initial Ir(III)-complex becomes rate-limiting. In the case of Rh, the Rh-imido formation step is rate-limiting. These qualitative difference stems from a unique bonding feature of the dioxazole moiety and the relativistic contraction of the Ir(V), which affords much more favorable energetics for the reaction. For the first time, a full molecular orbital analysis is presented to rationalize and explain the electronic features that govern this behavior. [1] S. H. Cho, J. Kim, J. Kwak, Sukbok Chang, Chem. Soc. Rev.2011, 40, 5068-5083 [2] K. Shin, H. Kim, S. Chang, Acc. Chem. Res. 2015, 48, 1040-1052 [3]Y. Park, K. T. Park, J. G. Kim, S. Chang, J. Am. Chem. Soc. 2015, 137, 4534-4542 [4] W. Xie, J. H. Yoon, S. Chang, J. Am. Chem. Soc. 2016, 138, 12605-12614 [5] Y. Park, J. Heo, M.-H. Baik, S. Chang, J. Am. Chem. Soc. 2016, 13
========================================================== 제 목 : Postsynthetic transmetalation of metal-organic frameworks 연 사 : 나명수 교수(UNIST) 일 시 : 2016년 11월 17일(목) 오후 4시 15분 장 소 : 화학관 첨단강의실(330118호) =========================================================== Postsynthetic transmetalation of metal-organic frameworks Myoung Soo Lah Department of Chemistry, Ulsan National Institute of Science & Technology (UNIST) 50 Unist-gil, Ulju-gun, Ulsan, Korea 44919 Fax: +82-(52)-217-2019 E-mail address: mslah@unist.ac.kr The replacements of framework metal ions and ligands were investigated in metal–organic frameworks (MOFs). The transmetalated MOFs could be obtained by soaking an MOF in the solution of a new replacing metal ion. By simply controlling the soaking time, not only fully transmetalated isostructural framework structure but also selectively transmetalated core-shell bimetallic structure could be prepared. The ligand exchanged MOFs could also be obtained via soaking an MOF in the solution of a new replacing ligand. By controlling the concentration of the replacing ligand, not only an entropically favorable MOF with completely exchanged ligand but also enthalpically favorable MOF with selectively exchanged ligand in the alternating layers could be obtained. While there is no significant structural rearrangement of the framework during the replacement of the framework metal ion, the replacement of the framework ligand led to the significant structural reorganization of the framework.
============================================================= 제 목 : Living Supramolecular Polymerization 연 사 : Dr Kazunori Sugiyasu(NIMS) 일 시 : 2016년 10월 6일(목) 오후 4시 30분 장 소 : 화학관 세미나실 (330226호실) ============================================================== Living Supramolecular Polymerization Kazunori Sugiyasu Molecular Design & Function Group, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan E-mail: SUGIYASU.Kazunori@nims.go.jp Supramolecular polymers are a new type of polymer in which monomeric units are brought together by reversible and highly directional non-covalent bonds, such as hydrogen bonding, coordination bonding, and p-p stacking. Therefore, supramolecular polymers are endowed with intriguing functionalities and properties that originate from the dynamic behavior of the non-covalent bonds. However, the “dynamic” reversible polymerization process in turn implies that controlling the length of supramolecular polymers is entropically unlikely. As such, in contrast to conventional polymer chemistry, an important challenge in realizing living polymerization technique has still remained in the supramolecular polymer chemistry1. In this presentation, I would like to show the first example of living supramolecular polymerization reported by us recently2. Our supramolecular polymerization was very unique in that the polymerization pathway was coupled with a competing aggregation pathway3. This pathway complexity dictated the spontaneous supramolecular polymerization to be kinetically controlled, and the addition of “seeds” of the supramolecular polymer initiated the supramolecular polymerization. We have investigated this polymerization process in a similar way to analyze the living polymerization: (1) the polymerization kinetics was the first order to the concentration of the seeds, (2) polymerization can be repeated many times, and (3) polydispersity indices (PDI) of the obtained polymers were around 1.1. All these results demonstrated that we succeeded for the first time in realizing living supramolecular polymerization. Scheme 1. Pathway complexity of supramolecular polymerization2. References (a) de Greef, T. F. A.; Smulders, M. M. J.; Wolffs, M. ; Schenning, A. P. H. J.; Sijbesma, R. P.; Meijer, E. W. Chem. Rev. 2009, 109, 5687; (b) van der Zwaag, D.; de Greef, T. F. A.; Meijer, E. W. Angew. Chem. Int. Ed. 2015, 54, 8334; (c) Ogi, S.; Stepanenko, V.; Sugiyasu, K.; Takeuchi, M.; Würthner, F. J. Am. Chem. Soc. 2015,137, 3300; (d) Kang, J.; Miyajima, D.; Mori, T.; Inoue, Y.; Aida, T. Science2015, 347, 646. Ogi, S.; Sugiyasu, K.; Manna, S.; Samitsu, S.; Takeuchi, M. Nat. Chem. 2014, 6, 188. Ogi, S.; Fukui, T.; Melinda, L. J.; Takeuchi, M.; Sugiyasu, K. Angew. Chem. Int. Ed. 2014, 53, 14363.
====================================== 제 목 : Control of molecular orientation, thermal stability, and photochemical stability in vapor-deposited organic glasses 연 사 : Mark D. Ediger 교수(University of Wisconsin-Madison) 일 시 : 2016년 9월 29일(목) 오후 4시 15분 장 소 : 화학관 첨단강의실(330118호) -------------------------------------- Control of molecular orientation, thermal stability, and photochemical stability in vapor-deposited organic glasses Mark Ediger University of Wisconsin-Madison We have used physical vapor deposition and the mobility of glassy surfaces to prepare what are likely the most stable glasses on the planet.(1) These materials have the properties expected for “million-year-old” glasses, including high density and high mechanical moduli.(2) Surprisingly, these glasses “melt” like crystals, with a constant velocity transformation front.(3) In addition, they resist photochemical degradation better than liquid-cooled glasses. Molecular orientation in vapordeposited glasses can be highly anisotropic.(4) These properties all depend systematically on the substrate temperature during deposition and can be measured efficiently with high throughput spectroscopic ellipsometry.(5) The interesting properties of vapor-deposited glasses arise from the high mobility of glass surfaces. During deposition, molecules near the free surface have the opportunity to sample many different packing arrangements. This mechanism allows the molecular orientation in vapor-deposited glasses to be predicted from molecular dynamics computer simulations(4, 6) and could be useful for optimizing the performance of organic light emitting diodes (OLEDs). 1. Swallen SF, et al. (2007) Organic glasses with exceptional thermodynamic and kinetic stability. Science 315(5810):353-356. 2. Kearns KL, Still T, Fytas G, & Ediger MD (2010) High-Modulus Organic Glasses Prepared by Physical Vapor Deposition. Adv. Mater. 22(1):39-+. 3. Swallen SF, Traynor K, McMahon RJ, Ediger MD, & Mates TE (2009) Stable Glass Transformation to Supercooled Liquid via Surface-Initiated Growth Front. Phys. Rev. Lett. 102(6):065503. 4. Dalal SS, Walters DM, Lyubimov I, de Pablo JJ, & Ediger MD (2015) Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors. P Natl Acad Sci USA 112(14):4227-4232. 5. Dalal SS, Fakhraai Z, & Ediger MD (2013) High-Throughput Ellipsometric Characterization of Vapor-Deposited Indomethacin Glasses. J. Phys. Chem. B 117(49):15415-15425. 6. Singh S, Ediger MD, & de Pablo JJ (2013) Ultrastable glasses from in silico vapour deposition. Nature Materials 12(2):139-144.
===================================================================================== 제 목 : Efficient Synthetic Methods of N-Heterocyclic Compounds using Pyridinium Zwitterion 연 사 : 유은정 교수(강원대학교) 일 시 : 2016년 6월 9일(목) 오후 4시 30분 장 소 : 화학관 세미나실 (330118호실) ===================================================================================== Efficient Synthetic Methods of N-Heterocyclic Compounds using Pyridinium Zwitterion Eun Jeong Yoo Department of Chemistry, Kangwon National University, Chuncheon 200-701, Korea E-mail:ejyoo@kangwon.ac.kr [m+n]-Dipolar cycloaddition is a powerful and widely used strategy for synthesizing heterocyclic compounds in a single operation without giving rise to byproducts. Among the known dipoles, azomethine ylide, consisting of an iminium ion adjacent to a carbanion, is an allyl anionic type 1,3-dipole that can be applied to construct N-heterocyclic compounds. However, most studies have mainly focused on [3+2]-dipolar cycloaddition using well-known 1,3-dipoles and 2p-dipolarophiles, while scarce attention has been focused on the development of new types of dipoles, such as 1,2-dipole, 1,4-dipole, and 1,5-dipole, for the formation of non-five-memberted heterocycles. In this presentation, [5+n]-dipolar cycloaddition, which is an extraordinary tool for formation of medium-sized N-heterocyclic compound, will be present. Air-stable pyridinium zwitterion is efficiently prepared via the rhodium-catalyzed reaction between pyridines and 1-sulfonyl-1,2,3-triazoles. This unprecedented pyridinium zwitterion are quite stable and exhibits different pattern of charge distribution in comparison with that of typical azomethine ylides. In addition, isolated zwitterions could be used as a 1,5-dipole for forming medium-sized heterocyclic compounds. Thermal [5+2]-dipolar cycloaddition of pyridinium zwitterions and dimethyl acetylenedicarboxylate (DMAD) successfully occurs to afford the seven-membered heterocycles with excellent yields. This breakthrough spurred the development of rhodium(II)-catalyzed three-component [5+2] cycloaddition reactions of pyridines, 1-sulfonyl-1,2,3-triazoles, and activated alkynes via the in situ generated 1,5-dipole; thus, a user-friendly and operationally simple strategy for systematic generation of the core structure of 1,4-diazepines was afforded. We will also discuss a new type of intermolecular rhodium(II)-catalyzed [5+3]-dipolar cycloaddition of pyridinum zwitterions and enol diazoacetates. This higher-order cycloaddition allows for the formation of an eight-membered heterocyclic skeleton, which is otherwise difficult to construct. The optimized dipolar cycloaddition occurs efficiently under mild conditions over a wide range of pyridinium zwitterions with high functional group tolerance. References Lee, D. J.; Ko, D.; Yoo, E. J.* “A Class of Rh(II)-Catalyzed Cycloaddition Reaction of Non-classical 1,5-Dipoles for Formation of Eight-Membered Heterocycles” Angew. Chem., Int. Ed. 2015, 54, 13715. Yoo, E. J.* “Azomethine Ylide: an Isolable 1,5-Dipole for Affecting [5+2] Cycloaddition Reaction” Synlett 2015, 26, 2189 (SYNPACTS, invited article). Lee, D. J.; Han, H. S.; Shin, J.; Yoo, E. J.* “Multicomponent [5+2] Cycloaddition Reaction for the Synthesis of 1,4-Diazepines: Isolation and Reactivity of Azomethine Ylides” J. Am. Chem. Soc. 2014, 136, 11606
============================================================== 제 목 : Microgels: Can we control their internal structure? 연 사 : Prof.Imre Varga(Loránd Eötvös University, Budapest) 일 시 : 2016년 4월 19일(화) 오후 4시 30분 장 소 : 화학관 세미나실 (330118호실) ============================================================== Microgels: Can we control their internal structure? Imre Varga Coordinator of the Marie Curie Initial Training Network NanoS3. Institute of Chemistry, Eötvös Loránd University, 1117 Budapest Pazmany s. 1/A, Hungary . email: imo@chem.elte.hu The synthesis and characterization of poly(N-isopropylacrylamide) - based multi-responsive microgel particles has attracted a significant interest in the last decade. They are considered as promising candidates in many applications ranging from heavy metal scavengers to diagnostic applications, and controlled drug delivery systems. However, the simple uniform structure of these particles presents a serious limitation in many respects e.g. resulting in limited colloid stability and loading and release characteristics. To meet the challenges of nanotechnology, there is compelling need to develop synthetic methods for controlling the internal structure of the nanogel beads. I will provide a summary of our work related to the preparation, characterization and application of pNIPAm based microgel particles. I will present a novel approach for the synthesis of microgel beads with controlled internal structure. The method allows to control the radial distribution of co-monomers within the gel particles, thus facilitating the preparation of microgel beads e.g. with homogenous crosslink density distribution or with unique hydrophilic shells. The formed core/shell structures can be further utilized to create either hierarchical nanoparticles or 3D-structures. I will show a few examples for the formation of hierarchical structures based on either electrostatic or host/guest interactions.
4/15(Fri.) KANEKA International Symposium 2016 안내 저희 성균관대학교에서는 2010년 KANEKA(주)로부터 지원을 받아 KANEKA/SKKU Incubation Center를 설립하여 전자재료 관련 기술과제에 관한 공동연구를 진행해왔습니다. 센터 행사의 일환으로 올해도 오는 4월 15일(금) 오전 9시 30분부터 성균관대에서 제 6회 “KANEKA/SKKU Incubation Center International Symposium 2016”을 개최할 예정입니다. 첨부자료에서 보실 수 있는 바와 같이, 연사는 지금까지와 마찬가지로 각 분야에서 세계적인 활약을 하고 계시는 저명한 교수 및 연구자들입니다. 특히, 기조강연을 맡은 Wisconsin대학 유혁(Yu Hyuk)교수는 재미교포로 세계적인 업적을 세운 훌륭한 교수입니다. 특별히 사전 접수가 필요 없으며, 등록비도 없으므로 당일 행사장에 부담 없이 와 주시면 감사하겠습니다. 강연에 관한 자세한 사항은 첨부파일의 포스터 및 초록집을 참고하여 주십시오. 행사명 : KANEKA/SKKU Incubation Center International Symposium 2016 날짜 : 2016년 4월 15일 (금) 장소 : 자연과학캠퍼스 학술정보관 Auditorium(B1) 시간 : 오전 9시 30분 ~ 오후 5시 강연자 및 타이틀 Hyuk Yu (University of Wisconsin-Madison) “Evolutionary Directions of US Chemical Research” Tomiki Ikeda (Chuo Univ.) “Photomobile Polymer Materials: Structures and Functions” Changhoo Chun (Seoul National Univ.) “Artificial Lighting for Plant Production in Vertical Farming” Junji Kido (Yamagata Univ.) “White OLEDs for Displays and General Lighting” Yasuo Nakane (Mizuho Securities Ltd.) “Outlook on Flat Panel Display Industry, LCD or OLED?” Taeghwan Hyeon (Seoul National Univ.) “Designed Chemical Synthesis and Assembly of Uniform-sized Nanoparticles for Medical and Energy Applications” Gi-Ra Yi (Sungkyunkwan Univ.) “High-Density DNA Brushes on Polymer Particles for Building Up Colloidal Superstructures” Tsuyoshi Sekitani (Osaka Univ.) “Imperceptible Sheet-Type Sensors for Cyber–Physical Systems”
2016 Spring/Summer Semester Plenary Seminar at SKKU Department of Chemistry ====================================== 제 목 : In vivo NMR to elucidate Brain Function 연 사 : 김성기 교수(Center for Neuroscience Imaging Research Institute for Basic Science, SKKU) 일 시 : 2016년 6월 2일(목) 오후 4시 15분 장 소 : 화학관 첨단강의실(330118호) -------------------------------------- In vivo NMR to elucidate Brain Function Seong-Gi Kim(seonggikim@skku.edu) Center for Neuroscience Imaging Research Institute for Basic Science Sungkyunkwan University NMR has been extensively used in chemistry for determining molecular structures and dynamics. When NMR is used as an imaging mode with gradient coils, it is referred to as magnetic resonance imaging, which is used for non-invasive diagnostics of diseases. In my research, MRI is used for determining brain function non-invasively by utilizing a change of paramagnetic deoxyhemoglobin. In my talk, I will discuss basic idea of functional MRI, current research lines, and IBS center’s NMR facility.
This site does not support JavaScript may connote normally invisible.